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An Experimental Study of a Steel Lattice
Mast under Natural Excitation

P. H. Kirkegaard!® and A. Rytter?

1Depa.rl:ment of Build. Tech. and Struct. Eng., University of Aalborg, 9000 Aalborg, Denmark
2Ramb¢ll, Hannemann & Hgjlund A/S, 9400 Ngrresundby, Denmark

Abstract: The natural frequencies and modal damping ratios of a 20 m high
steel lattice mast subjected to natural excitation have been experimentally inves-
tigated. The undamaged mast as well as the damaged has been considered. For
the damaged mast seven different damage states were considered. In these damage
states a damage was assumed in one of the lower diagonals. These diagonals were
cut and provided with a bolted joint implying that a damage could be simulated.
Based on 20 periodical measurements during 6 months the sensitivity of the modal
parameters, identified by an ARMA-model, to environmental conditions such as
wind-direction, wind-speed and air-temperature have been investigated. These
sensitivities have been compared with the changes of modal parameters due to a
damage. It is found that the measured natural frequencies vary less than one per
cent while the measured modal damping ratios vary more than twenty per cent
due to different environmental conditions. The measured bending natural frequen-
cies and the measured rotational frequency approximately decrease few per cent
and more than ten per cents, respectively, due to a damage corresponding to a
removal of one of the lower diagonals. This means that it is possible to detect such
a damage using a system identification technique based on natural excitation. A
damage corresponding to a fifty per cent reduction of the sectional area can also
be detected.

Keywords. System identification, ARMA-model, damage detection, civil engi-
neering application.

1. Introduction

Structural diagnosis by measuring vibrational signals of civil engineering struc-
tures is a subject of research which has received increasing interest during the last
decades. The main impetus for doing vibrational based inspection (VBI) is caused
by a wish to establish an alternative damage assessment method to the more tra-
ditionally methods such as e.g. visual inspection. Many research projects have
concluded that it is possible to detect damages in civil engineering structures by
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VBI, and some techniques to locate damages in civil engineering structures have
also been proposed. However, much of the performed research has been based
on numerical simulations and on laboratory models. A throughout review of VBI
techniques can be found in Rytter [1].

In order to use VBI techniques it is necessary to be able to obtain reliable es-
timates of the dynamic characteristics, e.g. natural frequencies. Such quantities
can be estimated from the resulting output caused by a known well-defined in-
put. However, the estimates can also be estimated by using the so-called ambient
testing, i.e. the only excitation on the structure is the natural excitation.

The aim of the research presented in this paper was to answer the following
questions by using full-scale measurements based on natural excitation:

1) Is it possible to distinguish between changes in modal parameters due to effects
produced by damages and those brought about as a result of changes in the ambient
environmental conditions ?

2) How sensitive are measured modal parameters to a damage ?

In order to answer these questions a 20 m high steel lattice mast subjected to
wind excitation was experimentally investigated. The experimental arrangement
are described in section 2. In section 3 the system identification method (ARMA)
used is described. In section 4 the experimental results are presented and discussed
and at last in section 5 conclusions are given.

2. Experimental Arrangement

An elevation of the 20 m high steel lattice test mast is shown in fig. 1.1. The four
chords K-frame test mast with a 0.9x0.9 m cross-section was bolted with twelve
bolts, three for each chord, to a concrete foundation block founded on chalk and
covered by sand.. The mast was constructed with welded connections. At the top
of the mast two plywood plates were placed in order to increase the wind-area.

The eight lower diagonals were cut and provided with a bolted joint. Each
bolted joint consists of 4 slice plates giving the possibility of simulating a 1/4,
1/2, 3/4 and full reduction of the area of a diagonal. A damage was simulated by
removing one or more splice plates in these bolted joints. Seven different damage
states (1,2,5,6,9,10,11) were considered. The damage state 1,2,5 and 6 correspond
to a removal of diagonal AB101, BC101, AB102 and BC102, respectively, see fig.
1.2. Damage states 9 and 11 correspond to fifty per cent reduction of the sectional
area of diagonal AB101 and AB102, respectively. Damage state 10 corresponds to
fifty per cent reduction of the sectional area of diagonal AB101, BC101, CD101
and DA101.
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Fig. 1.1. Elevation of Mast. Fig. 1.2. Diagonals of the lower two sections
of the mast.

The mast was instrumented with instruments to measure the accelerations,
wind-direction (wind-vane) and wind-speed (cup-anemometer). Further, the am-
bient air temperature was measured. The data acquisition and the analyse of the
sampled data were performed with the MATLAB, see PC-MATLAB [2], based on
program to Structural Time Domain Identification, STDI, see Kirkegaard et al.

[3]. A throughout description of the test arrangement can be found in Kirkegaard
et al. [4].

3. System Identification

In this section it is described how the modal parameters were estimated by an
ARMA-model. In recent years the application of ARMA models used in system
identification, see e.g. Soderstrom et al. [5] and Ljung [6], to the description of
structural systems has become more common, see e.g. Gersch et al. [7], Pandit et

al. [8], Natke [9] and Kozin et al. [10].

An ARMA(n,m) model of order n,m describing the response at discrete time
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points y; is given by

Ye = Z Qiye—i — Z Oier—i + e (3.1)
i=1 i=1

®; is an Auto Regressive (AR) parameter, O; is the Moving Average (MA) pa-
rameter and e; is a time series of a white noise process. If an ARMA(2n,2n — 1)
model is used for a stationary Gaussian white noise excited linear n-degrees-of-
freedom system it can be shown that the covariance of the response due to the
ARMA-model and that of the white noise excited structure will be identical, see
e.g. Kozin et al. [10]. The AR-parameters are obtained by minimizing an error
function Vi expressing the variance of e,

Wweg 2 d=g

t=1 t=1

(' — ) (3:2)

N | =

where N is number of data and ¢; is the prediction error. yM and ¢, are the
measured response and the predicted response by (3.1), respectively. It may be
noticed that the white noise assumption must be checked when the AR and MA
parameters and the residuals have been estimated.

When the AR parameters have been estimated the dynamic parameters are
found from the 2n roots, A; of the characteristic polynomial of the AR-parameters:

AZR — B A2l By A — By, =0 (3.3)

In e.g. Pandit et al. [5] it is shown that the roots are related to the modal
parameters through the 2n relations

Ai = exp(uilt) 1=1,2,..,2n (3.4)

where At is the sampling interval. p; has the following relation to the modal

parameters
pi = —w;( £iwiq /1 — Cf ;< 1.0 (3.5)

From measurements of the response process it is possible to get estimates of the
AR-parameters ®; and ®, where the estimates of the variance of the estimated
parameters can be estimated by the Cramer-Rao lower bound. This implies that
the covariance matrix of parameter estimates can be obtained by the inverse of

the Fisher information matrix J which can be written

N 0e(3) 0e,(F) "
Ae 0P 0P

<l

] (3.6)

It is assumed that the variance of the noise process is A\¢. N is the number of
samples. @ is a vector including the AR-parameters. When the elements of the
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information matrix have been calculated the parameter covariance matrix 63 of
N

estimates of the parameter vector §N can be expressed in the following way
C.- =4J 4 (3.7)

where the transformation matrix A4 is given by

SHh OH . . . . . Bf
3@1 a‘bg a‘I>2n

86 84 . . . . . 94
6<I>1 8@2 34’2"

A= (3.8)

Oy is an estimator of the parameter vector § = [f1,C15 f2,Cayeeey Fry Cu]T. The

above estimation of A will only be accurate if the function is sufficiently smooth
since it corresponds to a linear approximation of the function describing the inverse
transformation from AR- parameters to the parameters , see e.g. Kirkegaard [11]
and Jensen et al. [12].

4. Ekperimental Results and Discussion

In the period from December 92 to June 93 twenty measurements sessions were
performed with the undamaged mast . The dates of the sessions were selected in
such a way that a data base containing measured responses due to different wind-
directions and wind-speeds were created. At a measurement session 10 time series
were recorded for each transducer, i.e. accelerometers as well as cup-anemometer
and wind-vane. In the same period 2 measurement sessions were performed where
damages were simulated at the mast. In the period the lowest and the highest air
temperature were -5°C and 20°C, respectively.

From preliminary studies of response spectra, it was decided to concentrate
the identification on the first two bending modes parallel to the x-axis and y-
axis, respectively, and the first rotational mode. Prior to the identification the
acceleration signals were detrended and removed from outliers. Further, the signals
from the accelerometers were low-pass filtered with a cut-off frequency selected to
13.3 Hz corresponding to 70 % of the Nyquist frequency. The signals from the cup-
anemometer and wind-vane were not filtered. Results obtained by a simulation
study indicated that a sampling frequency equal to approximately 38 Hz will give
the best reduction of bias of the modal parameter estimates. Further, by using
this sampling frequency, it was shown that only a limited reduction of the variance
of the modal parameter estimates could be obtained by using more than 8000
number of data points. This implied that 8000 points were sampled by 38 Hz
from accelerations signals and signals from cup-anemometer and wind-vane. The
signals were not high-pass filtered in order to remove low-frequency drifts in the
data.




Prior to the system identification the validity of the assumptions for the ARMA
model were investigated. It was found that the response could be assumed linear,
stationary and approximately Gaussian, both for the undamaged mast as well as
for the damaged. Based on different checks, it was concluded that an 6th-order
ARMA-model for the mast was satisfactory. The model-order was estimated based
on the Akaike Information Theoretic Criterion and an investigation of the poles and
zeros with respect to a pole-zero cancellation in the dynamic model. The validity of
the model of the ARMA-model was investigated by comparing the power spectrum
obtained by a Fast Fourier Transformation and the spectrum obtained from the
ARMA-model. Further, the investigation of the spectrum and the autocorrelation
of the residuals indicated whiteness of the residuals and therefore validate the
model. As a final test for model validity, a fairly good match was found between
the model output and measured output.

4.1 Modal Parameters of the Undamaged Mast

As mentioned above it was the natural bending frequencies no. 1 and no. 4,
the natural bending frequencies no. 2 and no. 5 and the natural frequency no.
3 corresponding to deflection parallel to the x-axis and deflection parallel to the
y-axis and rotation, respectively, which were estimated.

The estimates of the natural frequencies and the modal damping ratios are
shown as function of the measurement number in fig. 4.1. The 20 estimates in
each figure have been obtained by combining the measured estimates of natural
frequencies and modal damping ratios, respectively, from each measurement ses-
sion by weighting with the standard deviations. At each measurement session 10
times series were recorded, implying 10 estimates of the natural frequencies and
modal damping ratios, respectively.

The solid lines in fig. 4.1 indicate a mean value of the 20 estimates while the
dashed lines give an interval between the mean value plus one per cent and the
mean value minus one per cent for the natural frequencies. In the same way an
interval corresponding to the mean value plus ten per cent and the mean value
minus ten per cent is shown with dashed lines for the modal damping ratios. Fig,.
4.1 shows that the measured natural frequencies vary approximately only few per
cent while the modal damping ratios vary more than twenty per cent. It is seen
that the bending natural frequencies are more sensitive than the rotational fre-
quency. The standard deviation of the natural frequencies and modal damping
ratios are approximately 0.003 Hz and 0.001, respectively. This indicates that
the variation of the measured modal parameters is due to changes in the environ-
mental conditions and only not due to randomness. In order to investigate the
sensitivity of natural frequencies with respect to wind-direction and wind-speed
the 200 estimates of the natural frequencies are shown in fig. 4.2a as function
of the wind-speed. The estimates have been divided into 4 groups. Each group
corresponds to a wind-direction interval of 90 degrees. Fig. 4.2a shows that the
natural frequencies are sensitive to the wind-speed. However, it is most clear for
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the first and second natural frequency. Further, it is seen that the natural fre-
quencies have an increase for a wind-speed corresponding to 7-8 m/s when the
wind-direction is changed. However, this change can also be a consequence of a
change in temperature. In fig. 4.2b the 200 estimates of the natural frequencies
are shown as a function of the wind-speed. The estimates have been divided into
2 groups. corresponding to estimates obtained from measurements where the air
temperature was lower than 0°C and higher than 0°C, respectively. It is seen
that the increase in natural frequencies for a wind-speed corresponding to 7-8 m/s
can be due to an air temperature below 0°C and not necessarily a change in the
wind-direction. However, more data most be obtained in order to investigate this
problem.

4.2 Modal Parameters of the Damaged Mast

At two different measurement sessions, session 4 and 6, the natural frequencies
and modal damping ratios were estimated for seven different damage states, see
section 2. In fig. 4.3 the measured natural frequencies and modal damping ra-
tios are shown as function of damage state. The solid lines indicate the mean
value from fig. 4.1. Fig. 4.3 shows that the modal parameters are sensitive to
a damage corresponding to a removal of one of the lower diagonals, i.e. damage
states 1,2,5 and 6. It is seen that the change in the bending natural frequencies
depends on the location of the damage. Fig. 4.3 also shows that the rotational
frequency is more sensitive to a damage than the bending frequencies. Further,
the modal parameters seem to be insensitive to damages corresponding to damage
states 9,10 and 11. However, above it is shown that the modal parameters are
sensitive to environmental conditions. Therefore, in order to distinguish between
a change in the modal parameters due to a damage or the environmental condi-
tions, modal parameters corresponding to the same environmental conditions have
to be compared. In fig. 4.4a and 4.4b the measured natural frequencies from mea-
surement sessions 4 and 6 are shown as a function of damage state, respectively.
The solid lines in fig. 4.4a show the lower bound of the 95% confidence level of
the natural frequencies from measurement session 3. The estimates are assumed
Gaussian distributed. In the same way in fig. 4.4b the lower bound of the 95%
confidence level of the natural frequencies from measurement session 5 is shown.
The measurement sessions 3 and 5 (undamaged) correspond to measurement ses-
sions 4 and 6 (damaged), respectively, with respect to environmental conditions,
i.e. approximately the same wind-speed, wind-direction and air-temperature. This
means that a change in the measured natural frequencies can be interpreted as
a change due to a damage and not to a change in the environmental conditions.
Fig. 4.4 shows that it is possible to detect a damage in the mast corresponding
to a removal of one of the lower diagonals, damage states 1,2,5 and 6. Further, a
damage, damage states 9 and 11, corresponding to a fifty per cent reduction of the
sectional area can also be detected. However, if such a damage should be detected
it is important to compare modal parameters from the damaged and undamaged
mast, respectively, obtained under the same environmental conditions.
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Fig. 4.3. Estimated natural frequencies and modal damping ratios as a function
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4. Conclusions

In this paper the natural frequencies and modal damping ratios of a 20 m high steel
lattice mast subjected to natural excitation has been experimentally investigated.
The conclusions of the paper can be stated as follows:

[5]
[6]

[7]
8]
[9]
[10]

[11]

[12]

Measured natural frequencies vary less than one per cent while the measured
modal damping ratios vary more than twenty per cent due to different envi-
ronmental conditions, such as wind-speed and air-temperature

The measured bending natural frequencies and the rotational frequency ap-

proximately decrease few per cent and more than ten per cent, respectively,
due to a damage corresponding to a removal of one of the lower diagonals.

It is possible to detect a damage corresponding to a removal of a diagonal
using a system identification technique (ARMA) based on natural excitation.
A fifty per cent reduction of the sectional area of a diagonal can be detected, if
the measured modal parameters from the damaged mast and the undamaged
mast, respectively, are obtained under the same environmental conditions.
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